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Abstract

This paper is concerned with an estimation of the e}ective elastic properties of an anisotropic body
permeated by ellipsoidal cracks following the Eshelby|s method[ The classical integral expression of the P!
tensor\ the symmetrised derivative of the Green|s tensor\ is given for a 2D de_ned crack embedded in an
anisotropic medium[ The numerical evaluation of the P!tensor is validated with several limiting cases of
simpli_ed geometry cracks[ The interest of a 2D representation of the cracks is shown with several appli!
cations] in~uence of the ellipticity and crack thickness aspect ratios\ growing cracks[ To conclude\ a
comparison between theoretical results and experimental data is done for the load!induced change of the
compliance tensor for a damaged composite material[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The overall elastic moduli of a solid are changed in the presence of microcracks[ Eshelby "0846#
has developed a remarkable method for the survey of heterogeneous inclusion in an in_nite
medium[ This method has very often been used and extended to the anisotropic medium "Willis\
0853^ Bhargava and Radhakrishna\ 0853#[ These pioneer works are the basis of several methods
developed to estimate the e}ective properties of a cracked solid[ Among these methods\ the Self!
Consistent method "Hill\ 0854^ Budiansky and O|Connel\ 0865^ Hoenig\ 0868^ Hori and Nemat!
Nasser\ 0872# and the Di}erential Scheme "McLaughlin\ 0866^ Laws and Dvorak\ 0876^ Hashin\
0877^ Deng and Nemat!Nasser\ 0881# are the most used[ They require the calculus of a fourth
order tensor noted P that has been _rst de_ned by Hill "0854#[ Even if the integral formulation of
P is well known\ "Faivre\ 0860^ Laws\ 0866a#\ the calculus of this tensor often requires numerical
evaluations for arbitrary ellipticity of the inclusion[ To avoid these numerical evaluations\ the
cases presented in the literature deal with geometry leading to analytical formulas[ Firstly\ one can
consider the e}ect of spherical voids embedded in an isotropic body that leads to an analytical
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expression of the tensor P[ Secondly\ Laws "0866b# considers the ellipsoidal crack via the in_nite
elliptic cylinder in an anisotropic medium and obtains an approximated analytical expression of
P[ These approximations are useful to estimate e}ective elastic properties for two particular cases]
concrete and composite laminates[ Nevertheless\ such a simpli_ed geometry of a crack is no more
e.cient for other real material wherein cracks are really ellipsoidal[

By using an ultrasonic device\ we know the variations of the sti}ness tensor during the damage
process for woven ceramic matrix composites "Audoin and Baste\ 0883#[ In such a case\ the crack
length is limited by the material microstructure and the crack opening displacement is not negligible
"He et al[\ 0883#[ Therefore it is necessary to evaluate the P!tensor for 2D de_ned cracks[

Our purpose is to present a numerical evaluation of P for several types of ellipsoids and materials
without any approximation on the shape of inclusion[ First\ our numerical results are compared
with classical approximations for both isotropic and anisotropic materials permitted by spherical
or slit voids[ Then\ we pay attention to the e}ect of the crack|s geometry[ The prediction of e}ective
elastic properties is presented for two types of problems\ _rstly growing cracks and _nally a
comparison between prediction and experimentation for a multiplication of cracks during a damage
process[

1[ Physical motivation

The global behaviour of CMCs is directly related to the ability of the material to crack "Evans
and Zok\ 0883#[ Transverse matrix microcracking is the basic mechanism of deformation in CMCs[
The matrix microcracks are stopped and deviated in mode II by the 89> layers "Fig[ 0#[ The mode
II leads to _bre!matrix sliding[ This sliding allows transverse crack opening displacement whose
macroscopic result is the inelastic strain "He et al[\ 0883#[ As it represents a signi_cant part of the
total strain\ the thickness of the cracks is no longer negligible[

The various scales of a woven composite strongly in~uence its behaviour[ The extension of
cracks is limited by the waviness of the bundles so that the in_nite cylinder representation is no
longer available[ The various mechanisms of damage usually occur as follows] _rst\ an inter!bundle

Fig[ 0[ Deviation in mode II of transverse cracks in a 1D composite[
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Fig[ 1[ Damage mechanisms in a woven 1D composite[

matrix cracking normal to the tensile axis "0# "Fig[ 1# is observed\ then it is deviated in mode II by
the bundleÐmatrix interface and an array of longitudinal cracks "1#\ parallel to the tensile axis\
appears[ If the layers are prone to delamination\ a third system has to be considered[ It consists of
a pattern of cracks parallel to the composite thickness "2#[ When the inter!bundle matrix is
completely cracked\ the mechanism comes to saturation[ Then\ the cracking spreads inside the
longitudinal bundles "3#[ Inside the bundles\ the _bres stop or deviate the intra!bundle cracks
causing a _bre!matrix debonding "4#[

Microcracking strongly modi_es the elastic properties of the materials[ There are two ways to
study the damage mechanisms "Baste and Audoin\ 0880#[ The macroscopic approach consists of
measuring the internal structural changes by their e}ects on the mechanical response[ The modi!
_cation due to the damage process is de_ned as an additive tensor Sc and the compliance tensor
of the damaged material\ S becomes]

S � S9¦Sc "0#

where S9 is the compliance tensor of the undamaged material[
The micromechanical approach consists of analysing the microscopic phenomena to predict the

macroscopic behaviour[ The microdefects are de_ned by their geometrical parameters ai and their
volume concentration cc[ A numerical or analytical treatment leads to the e}ective properties of
the continuous equivalent damaged medium\ "Wang et al[\ 0875#]

S � S9¦Sc"S9\ ai\ cc#[ "1#

2[ Formulation of the problem

Let V\ a representative volume of the material\ be loaded by a uniform stress S[ We have to
calculate the average of the total strain E corresponding to S[ Every type of inclusions embedded
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in the material is regarded as a phase[ Each phase i is characterised by its compliance tensor Si and
we have]

E � s
i

ðoŁi and S � s
i

ðsŁi "2#

where ðoŁi and ðsŁi are the average strain and stress of the ith phase de_ned by]

ðoŁi � SiðsŁi[ "3#

Consider a solid with two phases] the undamaged material and an array of similar cracks[ The
_rst part of eqn "2# is then]

E � S9S¦ofiss "4#

where S9S and o_ss are respectively the average strain of the undamaged material and of the cracks[
Since the material remains elastic and homogeneous\ o_ss is linked to S by a local tensor Bn "Hill\
0854#\ then it follows]

E �"S9¦Bn#S[ "5#

Equation "5# leads to the de_nition of the e}ective compliance tensor Se}]

Seff � S9¦Bn[ "6#

The tensor Bn is representative of the change due to the cracks[ It has been given by Laws et al[
"0872# as]

Bn � ccQ
−0\ "7#

where cc is the volume concentration of cracks and Q−0 is the local compliance tensor for a single
crack embedded in an in_nite medium[ Its de_nition stems from the works of Eshelby "0846# and
Faivre "0860# and has been given by Laws "0866b#]

Q−0 �"C−CPC#−0\ "8#

where C is the sti}ness tensor of the material and P is the symmetrised derivative of the Green|s
tensor[ For an ellipsoidal crack de_ned by]

x1
0

a1
¦

x1
1

c1
¦

x1
2

b1
¾ 0\ "09#

the integral expression of the fourth order tensor P is given by Faivre "0860#]

Pijkl �
abc
3p gV

Dijkl"vn#

"a1v1
0¦c1v1

1¦b1v1
2#2:1

dV\ "00#

where V is the surface of the unit sphere centred at the origin of "v0\ v1\ v2# space[ The fourth
order tensor D is de_ned by]

Dijkl � vlvj`ik "01#

and
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`ik � ðCijklvjvlŁ−0
"ik# [ "02#

Obviously\ P depends on both the sti}ness of the material and the geometry of the cracks[ Let two
geometric parameters of the cracks be introduced] the crack ellipticity aspect ratio in the plane
"0\ 1#] g � a:c and the crack thickness aspect ratio in the direction 2] d � b:c[ By introducing these
two parameters into eqn "00#\ it follows]

Pijkl �
gd

3p gV

Dijkl"vn#

"g1v1
0¦v1

1¦d1v1
2#2:1

dV[ "03#

Let h be the number of cracks per unit volume then

cc �
3p

2
= abc = h with h �

0
Vcell

�
0

1x0 = 1x1 = 1x2

[ "04#

Vcell is the product of the distances between two cracks in the three normal directions of the space
"Fig[ 2#[ It represents the largest volume of material containing a single crack[ By introducing f\
the crack density parameter in the plane "0\ 1#]

f �
3c1

1x0 = 1x1

and b the crack density parameter in the third axis]

b �
1c
1x2

\ "05#

cc is de_ned with the two geometric parameters g and d by]

cc �
p

5
= f = g = b = d[ "06#

Equations "6# and "7# are the basic governing equations for the calculation of e}ective elastic

Fig[ 2[ Unit cell of a cracked body[
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constants of bodies permeated by cracks[ There are di}erent approaches to resolve these equations[
Firstly\ one considers each crack as being embedded in the undamaged material "Mori and Tanaka\
0862#\ eqn "7# is then calculated with the initial sti}ness tensor[ Physically\ the e}ect of the
interaction between cracks is neglected and the change due to the cracks is obviously under!
estimated[ On the contrary\ in the self!consistent method\ the crack sees itself as a single crack in
the searched equivalent homogeneous medium[ It attempts to account for inclusion interactions
and eqn "6# is no longer explicit]

Seff � S9¦ccQ
−0"S−0

eff \ P"S−0
eff ##[ "07#

Equation "07# is less easy to calculate than eqn "6# with the MoriÐTanaka method but it leads to
a more realistic evaluation of the e}ective compliance tensor[

The third method we will present is the self!consistent di}erential scheme[ It is based on the
notion of incremental construction of the damaged material by gradual addition of in_nitesimal
amounts of cracks[ It leads to the resolution of a _rst order di}erential equation "MacLaughlin\
0866#]

dSeff

dcc

�
0

0−cc

Q−0"S−0
eff \ P"S−0

eff ##\ "08#

with

Seff "cc � 9# � S9[ "19#

This method is more e.cient than the others for a porous medium or a large volume concentration
of cracks but its physical interpretation is not easy "Zaoui\ 0885#\ especially when several types of
cracks are initiated simultaneously[

Figure 3 presents the comparison between the three methods for a multiplication of transverse
cracks in an anisotropic medium[ Only the three most in~uenced ones are plotted[ The di}erence
between the three methods is sensible only for large volume concentrations of cracks[ In accordance
with the results found in the literature\ the MoriÐTanaka method gives the lower variation and the

Fig[ 3[ Comparison of the e}ective elastic constants evaluation schemes[ The three presented compliances as functions
of the volume concentration of cracks are the most in~uenced ones[
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self!consistent method gives the upper one[ In order to obtain a realistic prediction for the e}ective
elastic properties\ we will use the self!consistent method in the following parts as the volume
concentration of cracks does not reach large values in composite materials[

3[ Evaluation of the P!tensor

Even if the integral eqn "03# is well known\ its determination is a tricky problem for the calculus
of the e}ective elastic properties[ Moreover\ the physical reality requires the determination of Pijkl

for ellipsoidal cracks and orthotropic medium[ In such a case\ eqn "03# cannot lead to analytical
expressions[ So\ we have developed a numerical evaluation of the tensor P[ The integrals are
calculated by introducing spherical coordinates in eqn "03# with a 1D Simpson|s method over the
mesh of the rectangle ð9\ pŁ ( ð9\ 1pŁ[ The numerical results are compared with three classical
models in Figs 4Ð6\ in order to validate the calculus[

Firstly\ we pay brief attention to an isotropic medium containing spherical cracks[ Obviously\
in such a case\ the P!tensor is isotropic "Zhao et al[\ 0878#[ So it only requires the calculation of
two integrals\ P00 and P01 to determine the tensor P[ As]

g � d � 0\ "10#

eqn "03# falls in]

Pijkl �
0
3p gV

Dijkl"vn# dV\ "11#

with

D00 �
v3

0

C00

¦
"v1

0−v3
0#

C33

"12#

and

D01 � −
v1

0v
1
0

C33C00

"C01¦C33#[ "13#

It leads to the _nal expressions]

P00 �
0
04

(
6C33¦1C01

C33C00

"14#

and

P01 � −
0
04

(
C33¦C01

C33C00

[ "15#

Secondly\ the case of penny!shaped cracks is available in the literature "Laws\ 0874#[ Analytical
expressions of the Pijkl are evaluated for an isotropic medium with a series expansion with respect
to the thickness ratio d[ As a � b\ it is possible to write eqn "03# with]
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I"l\ m\ n# �
d

C00C
1
33 g

0

−0

l¦mj1¦nj3

"0−"0−d1#j1#2:1
dj[ "16#

The series expansion of the integral I with respect to d up to order 1 leads to]

I"l\ m\ n# �
1"l¦m¦n#

C00C
1
33

¦
pd

C00C
1
336−2"l¦m¦n#¦

2l¦m
1 7¦O"d1#[ "17#

Equations "16# and "17# are similar to the expressions given by Laws "0874# for a transversely
isotropic medium[ For a penny!shaped crack embedded in an isotropic medium\ as the plane "0\ 1#
remains isotropic\ the evaluation of the tensor P is done by calculating P00\ P02\ P22\ P44 and P55[
We have]

p00 � 0
05

I"2C00¦C33\ 9\ 9#

P02 � 0
3
I"9\ −C33"C00−C33#\ C33"C00−C33##

P22 � 0
1
I"9\ C33\ C00−C33#

P44 � 0
3
I"1C33\ 3C00−6C33\ −3"C00−C33##

P55 � 0
3
I"C00¦C33\ −1C00\ C00−C33#[ "18#

The expressions given by Laws "0874# lead to the same results by considering an isotropic medium
except for P44[ It may not have been printed properly[

Figure 4 is concerned with an isotropic material\ a sample of epoxy resin elaborated by Ifremer
and characterised by an ultrasonic method "Hosten et al[\ 0881#\ Table 0[

The results are plotted with respect to the thickness aspect ratio d for circular cracks in the plane
"0\ 1#\ g � 0[ The components of P are evaluated with eqns "14# and "15# for the spherical inclusion[
Equation "18# gives the Pij for penny!shaped cracks[ As they are de_ned for weak thicknesses\ the
results begin for d � 9[0[ The results obtained with a numerical evaluation of eqn "03# lead to the
same value than analytical expression for d � 0[ Moreover\ when d tends to zero\ the numerical
results are similar to those obtained with the penny!shaped model[ The di}erences observed for
P22\ P33 and P44 are due to the three!dimensional representation of cracks\ eqn "03#[ Indeed\
however the numerical calculation takes the thickness into account\ the penny!shaped model is a
resolution of a 1D problem[

As most composite materials exhibit an orthotropic symmetry\ we validate the numerical cal!
culation of P also for this class of symmetry[ Laws "0866b# has developed a model for slit cracks
in an anisotropic medium by considering the crack as an in_nite elliptic cylinder\ c : �\ with a
thickness aspect ratio o � b:a tending to zero[ The non!zero components of P are "Laws\ 0866b#^

P00 � o
C22¦C44"ab#0:1

C00C44"a0:1¦b0:1#zab

P02 � −o
C02¦C44"ab#0:1

C00C44"a0:1¦b0:1#zab
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Fig[ 4[ The P!tensor as a function of the crack thickness aspect ratio for an isotropic medium[

Table 0
Sti}nesses of the isotropic medium

Cij "Gpa#

C00 � C11 � C22 � 7[1
C33 � C44 � C55 � 0[7
C01 � C02 � C12 � 3[5
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P22 �
0

3C22

¦o
C22−C44"a¦b¦a0:1b0:1#

C22C44zab"a0:1¦b0:1#

P33 �
0

C33

−o
C0:1

55

C2:1
33

P44 �
0

C44

−o
1"C00C22−C1

02#

C00C44"a0:1¦b0:1#zab

P55 � o
0

"C33C55#0:1
\ "29#

where a and b are the roots of]

C00C44x
1−"C00C22−C1

02−1C02C44#x¦C22C44 � 9[ "20#

In Figs 5 and 6\ the numerical results are compared with eqn "29#[ As d is no longer available
for this model\ Pij are plotted with respect to the thickness aspect ratio de_ned by Laws\ o � b:a[
We have considered two ceramic matrix composites\ an orthotropic 0D SiCÐSiC and a quasi!
transversely isotropic 1D SiCÐSiC in order to analyse the in~uence of the anisotropy on the
variation of the P!tensor[ The materials have been elaborated by the European Society of Pro!
pulsion "S[E[P[# and characterised "Table 1# by an ultrasonic method "Audoin and Baste\ 0883#[

The components of P are calculated for various ellipticity aspect ratios g[ Obviously\ the weakest
is g\ the nearest are the numerical results from the ones given by eqn "29#[ Whereas the in_nite
elliptic model leads to zero for the components in direction 1\ numerical results show the in~uence
of g on these components[ The comparison between the two models lead to the same remark about
the in~uence of the thickness aspect ratio on P22 as with an isotropic medium[ The Pij are in~uenced
not only by the geometric parameters but also by the anisotropy of the material considered[ The
observation is particularly relevant to the change of P22[ As C22 and C11 have di}erent rates\ the
0D SiCÐSiC exhibits a strong anisotropy in direction 2 and the variations of g do not change P22[
On the other hand\ the 1D SiCÐSiC is quasi transversely isotropic in the plane "1\ 2# and P22 is
in~uenced by g[

To conclude with the tensor P\ one can say that the numerical evaluation of eqn "03# has been
validated[ Moreover\ the di}erences between the simpli_ed models and the numerical results
illustrate the in~uence of the various parameters and the necessity of a three!dimensional approach
in order to predict the changes due to a damage process in a best way[

4[ Applications

The variations of the compliance tensor are directly related to cc\ eqn "7# and the spatial
distribution of the cracks in~uences the evolution of the compliances\ through f and b[ Nevertheless
the crack shape also modi_es the evolution of Sij[ Figure 7 represents the variations of Q−0

ij rather
than Se} to insist on the in~uence of g and to avoid the e}ect of cc[ By considering the 1D SiCÐSiC
de_ned in Table 1 and a _ctitious isotropic medium de_ned by the two compliances S22 and S33
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Fig[ 5[ The P!tensor as a function of the crack thickness aspect ratio and of the crack ellipticity aspect ratio g for an
orthotropic 0D SiCÐSiC composite[

whose values are chosen equal to those of the composite\ we have separated the geometric e}ect
from the in~uence of the anisotropy[ The results "Fig[ 7# are given with respect to g for several
thickness ratios b:a[ We have plotted only the most a}ected components Q−0

22 \ Q−0
33 and Q−0

44 [
The weaker the ratio b:a is\ the higher the in~uence of g is[ The thickness e}ect is therefore more

important than the ellipticity in the plane "0\ 1#[ Nevertheless\ the ellipticity of the crack is of prime
importance for thin cracks[ It a}ects the three components in a di}erent manner[ As the evolution
of g is directly related to the value of c in the direction 1\ Q−0

33 is more in~uenced by g than the
others[ Indeed\ for a _xed b:a\ a decrease of g induces a growth of the crack in direction 1 and so
a more important change of the shear modulus of the plane "1\ 2#[ The in~uence of g on the Q−0

22

and Q−0
44 variation is the same for the two materials variations even if there are di}erences for

Q−0
44 due to the de_nition of the _ctitious isotropic material[ On the other hand\ concerning Q−0

33 \
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Fig[ 6[ The P!tensor as a function of the crack thickness aspect ratio and of the crack ellipticity aspect ratio g for a
quasi!transversely isotropic 1D SiCÐSiC composite[

Table 1
Sti}ness tensors of anisotropic media

Cij "GPa#

C00 C01 C02 C11 C12 C22 C33 C44 C55

0D SiCÐSiC 66 18 25 022 74 395 79 25 13
1D SiCÐSiC 020 72 39 356 114 215 85 46 43
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Fig[ 7[ The most in~uenced inclusion compliances as functions of the crack ellipticity aspect ratio g � b:c and as a
function of the crack thickness aspect ratio o � b:a[
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Fig[ 8[ A growing crack in the unit cell[

the in~uence of g is more important for the anisotropic medium[ Indeed\ when b:a � 9[9964
for instance\ Q−0

33 is twice as important for the 1D SiCÐSiC as for the _ctitious isotropic
medium[

As the evaluation of the tensor P has been done for 2D cracks\ the determination of the e}ective
compliance tensor can be calculated for two categories of the problem[ Firstly\ the damage process
can be represented by a multiplication of cracks with a _xed geometry[ For instance\ in a woven
CMC\ the cracks reach their size instantaneously as the bundles or the _bres limit their dimensions
and the matrix microcracking leads to an increase in the number of cracks[ Another damage
process is de_ned at the microscopic scale by growing cracks[ The _bre!matrix decohesion is an
example of growing cracks with a _xed distribution[ This problem has been treated by Deng and
Nemat!Nasser "0881# for an isotropic medium and a 1D problem[ The results we will present are
concerned with 2D growing cracks in a 1D SiCÐSiC "Table 1# and in the _ctitious isotropic solid
already de_ned[ The dimensions of the unit cell of the material have been _xed\ a and b have also
been _xed\ the crack is growing in direction 1[ Figure 8 represents three steps of a crack propagating
in the unit cell[

As 1c increases when the cracks are growing\ it is necessary to calculate the e}ective compliance
tensor for decreasing values of d � b:c and g � a:c[ Figure 09 shows the change of d and g during
the damage process with respect to 1c:1x1 where 1x1 is the distance between two cracks in direction
1[ The _xed dimension of the crack in the other directions are 1a � 199 mm and 1b � 19 mm[

The e}ective compliance tensors are represented in Fig[ 00 for the two materials with respect to
1c:1x1[ The calculations are performed with the self!consistent method and the unit cell is de_ned
in Fig[ 8[ The results are similar to the precedent application[ Indeed\ the anisotropy in~uences S33

more than the other components and the di}erences for S44 are due to the de_nition of the isotropic
material[ S22\ S33 and S44 remain the most in~uenced components[ Obviously\ the variations of S33

are more visible than the S44 ones as the cracks are growing in direction 1 and do not change in
direction 0[

Whereas Fig[ 00 deals with growing cracks\ Fig[ 2 is concerned with a multiplication of _xed
geometry cracks but they have a similar change for the most in~uenced compliances S22\ S33 and
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Fig[ 09[ Variations of the thickness and ellipticity aspect ratios for a growing crack[

Fig[ 00[ Growing crack!induced variations of the compliance tensor[

S44[ This remark shows the importance of the material|s microstructure[ Indeed\ the compliances
variation indicates the orientation of microcracking but\ without a morphological study of the
material\ it is impossible to know whether cracks are either growing or multiplying[
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5[ Comparison between experimental compliance changes and predictions on a 1D SiCÐSiC

composite

Let us consider a woven 1D SiCÐSiC[ This ceramicÐceramic composite is manufactured from
preforms built up from multiple layers of Nicalon Silicon Carbide "SiC# _bre and the SiC matrix
is added by a chemical vapour in_ltration "CVI# process[ As the matrix has a lower failure strain
than the _bres\ this composite exhibits rapidly a non linear behaviour mainly due to the matrix
microcracking under tensile stress[ Because of the woven nature of the composite\ the plane "1\ 2#
is quasi isotropically transverse[ The sample is a thin plate shaped\ 2 mm in thickness and 1[6 g
cm−2 in density[ It was submitted to tensile stress in direction 2 parallel to the direction of one of
the bundles[

An experimental device that couples an ultrasonic immersion tank with a tensile machine allows
to know the changes of the complete sti}ness and compliance tensor during a damage process for
a composite material "Audoin and Baste\ 0883#[

Figure 01 shows the two scales of damage in the 1D SiCÐSiC[ The damage process starts at 79
MPa with a transverse matrix cracking at the inter!bundle scale[ Then\ longitudinal and interstacks
cracking appear simultaneously at 89 MPa[ The three arrays of cracks come to saturation at 019
MPa and the intra!bundle damage start "Figs 02 and 03#[ Whereas\ the inter!bundle cracks are all
slit cracks\ the intra!bundle transverse matrix cracks are really ellipsoidal and the major axis is no
longer in direction 1 but in direction 0 "Fig[ 01#[

The prediction of the equivalent compliance tensor has been done with a two!models self!
consistent method[ Indeed\ the inter!bundle damage changes have been calculated with the in_nite
elliptic cylinder without thickness "Laws\ 0866b#[ The equation for the equivalent compliance
tensor is given by Laws et al[ "0872# for an anisotropic medium with a longitudinal crack system]

Seff � S9¦
p

3
blLl "S−0

eff \ S9# "21#

where bl is the crack density parameter and Ll is given by]

Ll "S−0
eff \ S9# � lim

o:9
oQ−0"S−0

eff \ S9#[ "22#

Equation "21# is generalised for three crack systems by introducing bt and bi the crack density
parameters for the {t| transverse and {i| interstacks crack systems and Lt and Li are obtained from
the following index transformation

0 : 0\ 1 : 2\ 2 : 1\ 3 : 3\ 4 : 5\ 5 : 4 "23#

for the {t| transverse crack system^ and

0 : 1\ 1 : 0\ 2 : 2\ 3 : 4\ 4 : 3\ 5 : 5 "24#

for the {i| interstacks crack system[ We have solved the implicit equation]

Seff � S9¦
p

3
btLt "S−0

eff \ S9#¦
p

3
blLl "S−0

eff \ S9#¦
p

3
biLi "S−0

eff \ S9# "25#
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Fig[ 01[ Micrographs of the transverse cracks in a 1D SiCÐsiC[ "a# Inter!bundle scale^ "b# intra!bundle scale "Morvan
and Baste\ 0887#[
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Fig[ 02[ Evolution of the crack distribution for the three arrays on two scales] "a# crack density parameters on two scales
for the transverse crack bt\ the longitudinal crack bl and the interstacks crack bi^ "b# volume concentration of transverse
crack at the intra!bundle scale[

where bt\ bl and bi\ the crack density parameters at the inter!bundle scale\ are imposed with a linear
increase "Fig[ 02#[

The model changes with the intra!bundle scale[ As the geometry of the longitudinal and inter!
stacks cracks remains the same\ the in_nite cylinder is still available for these arrays but the
transverse cracks are then represented with real ellipsoids so p:3 btLt "S−0

eff \ S9# is changed by ccQ
−0\

eqn "7# where cc is the volume concentration at the intra!bundle scale[ The expression of the
equivalent tensor is then]

Seff � S?¦ccQ
−0"S−0

eff \ P"S−0
eff ##¦

p

3
blLl "S−0

eff \ S9#¦
p

3
biLi "S−0

eff \ S9# "26#

where S? is the value of Se} at 019 MPa calculated with eqn "25# and cc\ bl and bi\ the crack density
parameters at the intra!bundle scale\ are imposed with a linear increase "Fig[ 02#[ This method allows
the prediction of the equivalent compliance tensor during the whole damage process "Fig[ 03#[

Figure 03 represents the variations of the 1D SiCÐSiC compliance tensor during the load[
Experimental values are given with their 89) con_dence interval "Baste and Morvan\ 0885# and
predictions are plotted in a continuous line[ The variations exhibit clearly three di}erent domains[
Compliances remain unchanged until the damage threshold[ Then matrix microcracking begins
and S22 sees an increase of more than 299) until saturation at 019 MPa[ The variation of S22

becomes less visible as the matrix microcracking spreads inside the bundles[ The same comments
can be made for S11 and S00 although the variations are weaker[ A good agreement is observed for
the diagonal compliances especially for the _rst three ones[ The di}erences observed for S33\ S44

and S55 are most probably due to the interaction between the di}erent arrays of cracks that is not
yet taken into account[ This remark is also applicable to the extra!diagonal components[

6[ Conclusion

A 2D representation of cracks has been developed[ Even if it does not lead to analytical formulas\
this method gives a more realistic approach to the physical phenomena[ Indeed\ it takes into
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Fig[ 03[ Comparison between experimental data with their 89) con_dence intervals "e# and predicted evolution "*#
of the compliance tensor for a 1D SiCÐSiC[

account the crack opening displacement and permits a prediction of damage processes such as
growing cracks[ Moreover\ both the in~uence of the geometry of cracks and the e}ect of the
anisotropy have been illustrated[ The introduction of 2D de_ned transverse cracks leads to a good
agreement between experimental data and a prediction for the compliance tensor[ The predictions
of the non!diagonal compliances remain problematic and point out the necessity to take into
account the interaction between cracks with di}erent orientations "Kachanov and Montagut\ 0875^
Molinari and El Mouden\ 0885#[
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