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Abstract

This paper is concerned with an estimation of the effective elastic properties of an anisotropic body
permeated by ellipsoidal cracks following the Eshelby’s method. The classical integral expression of the P-
tensor, the symmetrised derivative of the Green’s tensor, is given for a 3D defined crack embedded in an
anisotropic medium. The numerical evaluation of the P-tensor is validated with several limiting cases of
simplified geometry cracks. The interest of a 3D representation of the cracks is shown with several appli-
cations: influence of the ellipticity and crack thickness aspect ratios, growing cracks. To conclude, a
comparison between theoretical results and experimental data is done for the load-induced change of the
compliance tensor for a damaged composite material. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The overall elastic moduli of a solid are changed in the presence of microcracks. Eshelby (1957)
has developed a remarkable method for the survey of heterogeneous inclusion in an infinite
medium. This method has very often been used and extended to the anisotropic medium (Willis,
1964; Bhargava and Radhakrishna, 1964). These pioneer works are the basis of several methods
developed to estimate the effective properties of a cracked solid. Among these methods, the Self-
Consistent method (Hill, 1965; Budiansky and O’Connel, 1976; Hoenig, 1979; Hori and Nemat-
Nasser, 1983) and the Differential Scheme (McLaughlin, 1977; Laws and Dvorak, 1987; Hashin,
1988; Deng and Nemat-Nasser, 1992) are the most used. They require the calculus of a fourth
order tensor noted P that has been first defined by Hill (1965). Even if the integral formulation of
P is well known, (Faivre, 1971; Laws, 1977a), the calculus of this tensor often requires numerical
evaluations for arbitrary ellipticity of the inclusion. To avoid these numerical evaluations, the
cases presented in the literature deal with geometry leading to analytical formulas. Firstly, one can
consider the effect of spherical voids embedded in an isotropic body that leads to an analytical
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expression of the tensor P. Secondly, Laws (1977b) considers the ellipsoidal crack via the infinite
elliptic cylinder in an anisotropic medium and obtains an approximated analytical expression of
P. These approximations are useful to estimate effective elastic properties for two particular cases:
concrete and composite laminates. Nevertheless, such a simplified geometry of a crack is no more
efficient for other real material wherein cracks are really ellipsoidal.

By using an ultrasonic device, we know the variations of the stiffness tensor during the damage
process for woven ceramic matrix composites (Audoin and Baste, 1994). In such a case, the crack
length is limited by the material microstructure and the crack opening displacement is not negligible
(He et al., 1994). Therefore it is necessary to evaluate the P-tensor for 3D defined cracks.

Our purpose is to present a numerical evaluation of P for several types of ellipsoids and materials
without any approximation on the shape of inclusion. First, our numerical results are compared
with classical approximations for both isotropic and anisotropic materials permitted by spherical
or slit voids. Then, we pay attention to the effect of the crack’s geometry. The prediction of effective
elastic properties is presented for two types of problems, firstly growing cracks and finally a
comparison between prediction and experimentation for a multiplication of cracks during a damage
process.

2. Physical motivation

The global behaviour of CMC:s is directly related to the ability of the material to crack (Evans
and Zok, 1994). Transverse matrix microcracking is the basic mechanism of deformation in CMCs.
The matrix microcracks are stopped and deviated in mode II by the 90° layers (Fig. 1). The mode
IT leads to fibre-matrix sliding. This sliding allows transverse crack opening displacement whose
macroscopic result is the inelastic strain (He et al., 1994). As it represents a significant part of the
total strain, the thickness of the cracks is no longer negligible.

The various scales of a woven composite strongly influence its behaviour. The extension of
cracks is limited by the waviness of the bundles so that the infinite cylinder representation is no
longer available. The various mechanisms of damage usually occur as follows: first, an inter-bundle

Fig. 1. Deviation in mode II of transverse cracks in a 2D composite.
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longitudinal
bundle

Fig. 2. Damage mechanisms in a woven 2D composite.

matrix cracking normal to the tensile axis (1) (Fig. 2) is observed, then it is deviated in mode II by
the bundle—matrix interface and an array of longitudinal cracks (2), parallel to the tensile axis,
appears. If the layers are prone to delamination, a third system has to be considered. It consists of
a pattern of cracks parallel to the composite thickness (3). When the inter-bundle matrix is
completely cracked, the mechanism comes to saturation. Then, the cracking spreads inside the
longitudinal bundles (4). Inside the bundles, the fibres stop or deviate the intra-bundle cracks
causing a fibre-matrix debonding (5).

Microcracking strongly modifies the elastic properties of the materials. There are two ways to
study the damage mechanisms (Baste and Audoin, 1991). The macroscopic approach consists of
measuring the internal structural changes by their effects on the mechanical response. The modi-
fication due to the damage process is defined as an additive tensor S, and the compliance tensor
of the damaged material, .S becomes:

S=5+S. ey
where S, is the compliance tensor of the undamaged material.

The micromechanical approach consists of analysing the microscopic phenomena to predict the
macroscopic behaviour. The microdefects are defined by their geometrical parameters «; and their
volume concentration ¢.. A numerical or analytical treatment leads to the effective properties of
the continuous equivalent damaged medium, (Wang et al., 1986):

S: SO +SC(S(),CI,-, Cc)' (2)
3. Formulation of the problem

Let Q, a representative volume of the material, be loaded by a uniform stress X. We have to
calculate the average of the total strain E corresponding to X. Every type of inclusions embedded
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in the material is regarded as a phase. Each phase i is characterised by its compliance tensor S; and
we have:

E=3 () and E=Y (o) 3)

where {¢)’ and (o)’ are the average strain and stress of the ith phase defined by:

ey = SKo)". 4)

Consider a solid with two phases: the undamaged material and an array of similar cracks. The
first part of eqn (3) is then:

E: SOE+8ﬁss (5)

where S,X and g, are respectively the average strain of the undamaged material and of the cracks.
Since the material remains elastic and homogeneous, &g is linked to X by a local tensor B, (Hill,
1965), then it follows:

E=(S)+B,)X. (6)
Equation (6) leads to the definition of the effective compliance tensor S.q:
Setr = So+ B,. (7)
The tensor B, is representative of the change due to the cracks. It has been given by Laws et al.
(1983) as:
B,=c0, ®)

where ¢, is the volume concentration of cracks and Q' is the local compliance tensor for a single
crack embedded in an infinite medium. Its definition stems from the works of Eshelby (1957) and
Faivre (1971) and has been given by Laws (1977b):

0~ =(C-CPO)"', €)
where C is the stiffness tensor of the material and P is the symmetrised derivative of the Green’s
tensor. For an ellipsoidal crack defined by:

XTox3 X3

st sk (10)

the integral expression of the fourth order tensor P is given by Faivre (1971):

abc J D (w,)

ijkl = 5
dn |, (P} 4wl +b*wd)?

)

where Q is the surface of the unit sphere centred at the origin of (w;, w,, w;) space. The fourth
order tensor D is defined by:

Dy = 00,9 (12)

and
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Gix = [Cij/c/wja)/](ﬁc%‘ (13)
Obviously, P depends on both the stiffness of the material and the geometry of the cracks. Let two
geometric parameters of the cracks be introduced: the crack ellipticity aspect ratio in the plane
(1,2): y = a/c and the crack thickness aspect ratio in the direction 3: § = b/c. By introducing these
two parameters into eqn (11), it follows:

'))5 Dl” (wn)
gkl = g 2 2 ]kzl 2.2y3/2 (14)
4rn Q(V CL)1+Q)2+5 CU:;)'
Let 1 be the number of cracks per unit volume then
4n 1 1
= ——abc* ith 5= = . 15
Ce 3 aveth Wi " Vcell 2x1 ° 2X2 ° 2X3 ( )

V.1 1s the product of the distances between two cracks in the three normal directions of the space
(Fig. 3). It represents the largest volume of material containing a single crack. By introducing f,
the crack density parameter in the plane (1, 2):

4¢?
2x,*2x,

f=

and f the crack density parameter in the third axis:

g (16)

2x;°

¢. is defined with the two geometric parameters y and J by:

c= g f B, a7

Equations (7) and (8) are the basic governing equations for the calculation of effective elastic

2x3

/ 2x1

2x2

Fig. 3. Unit cell of a cracked body.



3714 C. Barret, S. Baste [ International Journal of Solids and Structures 36 (1999) 3709-3729

constants of bodies permeated by cracks. There are different approaches to resolve these equations.
Firstly, one considers each crack as being embedded in the undamaged material (Mori and Tanaka,
1973), eqn (8) is then calculated with the initial stiffness tensor. Physically, the effect of the
interaction between cracks is neglected and the change due to the cracks is obviously under-
estimated. On the contrary, in the self-consistent method, the crack sees itself as a single crack in
the searched equivalent homogeneous medium. It attempts to account for inclusion interactions
and eqn (7) is no longer explicit:

Seir = So+¢.0 ' (Ser', P(Ser')). (18)

Equation (18) is less easy to calculate than eqn (7) with the Mori-Tanaka method but it leads to
a more realistic evaluation of the effective compliance tensor.

The third method we will present is the self-consistent differential scheme. It is based on the
notion of incremental construction of the damaged material by gradual addition of infinitesimal
amounts of cracks. It leads to the resolution of a first order differential equation (MacLaughlin,
1977):

dS. 1

G 1o Q' Sa P, (19)
with

Seir(cc = 0) = S. (20)

This method is more efficient than the others for a porous medium or a large volume concentration
of cracks but its physical interpretation is not easy (Zaoui, 1996), especially when several types of
cracks are initiated simultaneously.

Figure 4 presents the comparison between the three methods for a multiplication of transverse
cracks in an anisotropic medium. Only the three most influenced ones are plotted. The difference
between the three methods is sensible only for large volume concentrations of cracks. In accordance
with the results found in the literature, the Mori-Tanaka method gives the lower variation and the
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Fig. 4. Comparison of the effective elastic constants evaluation schemes. The three presented compliances as functions
of the volume concentration of cracks are the most influenced ones.
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self-consistent method gives the upper one. In order to obtain a realistic prediction for the effective
elastic properties, we will use the self-consistent method in the following parts as the volume
concentration of cracks does not reach large values in composite materials.

4. Evaluation of the P-tensor

Even if the integral eqn (14) is well known, its determination is a tricky problem for the calculus
of the effective elastic properties. Moreover, the physical reality requires the determination of P,
for ellipsoidal cracks and orthotropic medium. In such a case, eqn (14) cannot lead to analytical
expressions. So, we have developed a numerical evaluation of the tensor P. The integrals are
calculated by introducing spherical coordinates in eqn (14) with a 2D Simpson’s method over the
mesh of the rectangle [0, =] *[0, 2n]. The numerical results are compared with three classical
models in Figs 5-7, in order to validate the calculus.

Firstly, we pay brief attention to an isotropic medium containing spherical cracks. Obviously,
in such a case, the P-tensor is isotropic (Zhao et al., 1989). So it only requires the calculation of
two integrals, P,; and P, to determine the tensor P. As:

y=o=1, 1)
eqn (14) falls in:

1
Pij = %L Dyju(w,) dQ, (22)
with
4 2 4
W (w7 — o)
D=7+ 23
YT Cu (23)
and
2 .2
W]
D, =———(Cr,+Cyy). 24
12 C44C11( 12+ 44) ( )
It leads to the final expressions:
1 7C4+2C,
Pu=1s*"c o 25
NTIST LG (25)
and
1 Cyu+Ch,
P, = — s 12 5
2 157 CuCy (26)

Secondly, the case of penny-shaped cracks is available in the literature (Laws, 1985). Analytical
expressions of the P, are evaluated for an isotropic medium with a series expansion with respect
to the thickness ratio . As a = b, it is possible to write eqn (14) with:



3716 C. Barret, S. Baste [ International Journal of Solids and Structures 36 (1999) 3709-3729

I(l,m,n) =

B Jl [+m&* +né de. 27

Cyy C4214 1 (1 —(1 _52)52)3/2
The series expansion of the integral / with respect to ¢ up to order 2 leads to:

2(I+m+n) 7o { 3l+m} R
I([,m,n) = + —3({+m+n)+ +0(5°). 28
( ) Cllci4 CIICAZI4 ( ) 2 ( ) ( )

Equations (27) and (28) are similar to the expressions given by Laws (1985) for a transversely
isotropic medium. For a penny-shaped crack embedded in an isotropic medium, as the plane (1, 2)
remains isotropic, the evaluation of the tensor P is done by calculating P,,, P;, Pi3;, Pss and Pg.
We have:

i =:13C, +Cyy, 0, 0)

Py =100, —Cu(Ciy—Cys), Cuu(Cyy—Cuy))

Py =310, Cuy, Cy—Cyy)

Pss =12C,,, 4C,,—7Chy, —4(Cy,—Cyy))

Poo = 1(C +Cayy —2Cy,, Cy1—Cyy). (29)

The expressions given by Laws (1985) lead to the same results by considering an isotropic medium
except for Pss. It may not have been printed properly.

Figure 5 is concerned with an isotropic material, a sample of epoxy resin elaborated by Ifremer
and characterised by an ultrasonic method (Hosten et al., 1992), Table 1.

The results are plotted with respect to the thickness aspect ratio ¢ for circular cracks in the plane
(1,2),y = 1. The components of P are evaluated with eqns (25) and (26) for the spherical inclusion.
Equation (29) gives the P;; for penny-shaped cracks. As they are defined for weak thicknesses, the
results begin for 6 = 0.1. The results obtained with a numerical evaluation of eqn (14) lead to the
same value than analytical expression for 0 = 1. Moreover, when J tends to zero, the numerical
results are similar to those obtained with the penny-shaped model. The differences observed for
Py, Py, and Pss are due to the three-dimensional representation of cracks, eqn (14). Indeed,
however the numerical calculation takes the thickness into account, the penny-shaped model is a
resolution of a 2D problem.

As most composite materials exhibit an orthotropic symmetry, we validate the numerical cal-
culation of P also for this class of symmetry. Laws (1977b) has developed a model for slit cracks
in an anisotropic medium by considering the crack as an infinite elliptic cylinder, ¢ — oo, with a
thickness aspect ratio ¢ = b/a tending to zero. The non-zero components of P are (Laws, 1977b);

c Cs; +C55(°‘ﬁ)1/2
Cp,Css(a'? ‘f'ﬁm)\/ of
e Cis +C55(°‘ﬁ)1"f2
Cy,Css(a'? +ﬁ”2)\/ of

P11=
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Fig. 5. The P-tensor as a function of the crack thickness aspect ratio for an isotropic medium.

Table 1
Stiffnesses of the isotropic medium

C; (Gpa)

Cii=Cyp=Cy;3=82
Cay=Css=Ce =138
Ch=C;=C;=46
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1 C33—C55(°‘+ﬁ+0‘1/2ﬁ1/2)

Py, = +eé
b 4Css C33Css+/ af(a'?+p'?)
e
P,,=——¢
T Gy Ciy
b _ 1 2CHC=Ch
T Css Ci1Css (@' + 1) /op
Po=¢6—"""-+, 30
° (C44Cos)'? (0
where o and f§ are the roots of:
C11Cssx* —(C1C33—C13=2C15Cs5)x+C353Cs5 = 0. (3D

In Figs 6 and 7, the numerical results are compared with eqn (30). As ¢ is no longer available
for this model, P,; are plotted with respect to the thickness aspect ratio defined by Laws, ¢ = b/a.
We have considered two ceramic matrix composites, an orthotropic 1D SiC-SiC and a quasi-
transversely isotropic 2D SiC-SiC in order to analyse the influence of the anisotropy on the
variation of the P-tensor. The materials have been elaborated by the European Society of Pro-
pulsion (S.E.P.) and characterised (Table 2) by an ultrasonic method (Audoin and Baste, 1994).

The components of P are calculated for various ellipticity aspect ratios y. Obviously, the weakest
is y, the nearest are the numerical results from the ones given by eqn (30). Whereas the infinite
elliptic model leads to zero for the components in direction 2, numerical results show the influence
of y on these components. The comparison between the two models lead to the same remark about
the influence of the thickness aspect ratio on Ps; as with an isotropic medium. The P,; are influenced
not only by the geometric parameters but also by the anisotropy of the material considered. The
observation is particularly relevant to the change of Ps;. As C;; and C,, have different rates, the
1D SiC-SiC exhibits a strong anisotropy in direction 3 and the variations of y do not change Ps,.
On the other hand, the 2D SiC-SiC is quasi transversely isotropic in the plane (2, 3) and Ps; is
influenced by y.

To conclude with the tensor P, one can say that the numerical evaluation of eqn (14) has been
validated. Moreover, the differences between the simplified models and the numerical results
illustrate the influence of the various parameters and the necessity of a three-dimensional approach
in order to predict the changes due to a damage process in a best way.

5. Applications

The variations of the compliance tensor are directly related to ¢., eqn (8) and the spatial
distribution of the cracks influences the evolution of the compliances, through fand . Nevertheless
the crack shape also modifies the evolution of S,,. Figure 8 represents the variations of Q' rather
than S, to insist on the influence of y and to avoid the effect of ¢.. By considering the 2D SiC-SiC
defined in Table 2 and a fictitious isotropic medium defined by the two compliances S;; and S,



C. Barret, S. Baste [ International Journal of Solids and Structures 36 (1999) 3709-3729 3719

man O BT T e — T
of 1 oF A2 d OF 13 3
. B -001E \TTTTE 3 2 3
50 & r SRS D 04F ]

a 1 -0.02FE w7 OTE E
10 R £ —oe— v=0 S E 3
r ]-003p —8 - =01 3 E ]
o5k . E - -x--1=0.15 o1 02 3
r ] -0.04F 4+- - =02 1 E Y
r ] . — o -7v=025 E
[ ) | L Lo Lol L v o] 0.3FE il 1 Lo

~ T : 25

' Fo22 E ] C ]

& o15fF - oOF g r ]

O £ g1 £ 245 h

S o1k D/+’i 001k x. ¥ %

< . X 0.02F X3 ,4F 3

< o / 4+ X7 E - 3 L 1

o 0.05[ SRV : + 7 - 1

S a T =2 0.03F ~_ C ]

5§ of gR=— —= ] 2 o T235[ J

2 - 6% 90 0.04F \§ -

A L ] . L b

Lol s L] ol L Lo 2301l N Lo ]
[ ] . T ——r
12,4 3 28b E
12.2[ 1 o7k 2 3
121 1 26f g 3
1.8 N, 250 L E
C N L E 3 1
| L R S ST A

0.01 0.1 0.01 0.1 0.01 0.1

Crack thickness aspect ratio & = b/c

Fig. 6. The P-tensor as a function of the crack thickness aspect ratio and of the crack ellipticity aspect ratio y for an
orthotropic 1D SiC-SiC composite.

whose values are chosen equal to those of the composite, we have separated the geometric effect
from the influence of the anisotropy. The results (Fig. 8) are given with respect to y for several
thickness ratios b/a. We have plotted only the most affected components 033, Q44 and O55'.
The weaker the ratio b/a is, the higher the influence of y is. The thickness effect is therefore more
important than the ellipticity in the plane (1, 2). Nevertheless, the ellipticity of the crack is of prime
importance for thin cracks. It affects the three components in a different manner. As the evolution
of y is directly related to the value of ¢ in the direction 2, Q' is more influenced by y than the
others. Indeed, for a fixed b/a, a decrease of y induces a growth of the crack in direction 2 and so
a more important change of the shear modulus of the plane (2, 3). The influence of y on the Q7'
and Qs variation is the same for the two materials variations even if there are differences for
055 due to the definition of the fictitious isotropic material. On the other hand, concerning Q,,',
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Fig. 7. The P-tensor as a function of the crack thickness aspect ratio and of the crack ellipticity aspect ratio y for a

quasi-transversely isotropic 2D SiC-SiC composite.

Table 2
Stiffness tensors of anisotropic media

C;; (GPa)
Cl 1 CIZ Cl 3 CZZ C23 C33 C44 C§5 C66
1D SiC-SiC 77 29 36 133 85 406 80 36 24
2D SiC-SiC 131 83 40 467 225 326 96 57 54
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Fig. 8. The most influenced inclusion compliances as functions of the crack ellipticity aspect ratio y = b/c and as a
function of the crack thickness aspect ratio ¢ = b/a.
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Fig. 9. A growing crack in the unit cell.

the influence of y is more important for the anisotropic medium. Indeed, when b/a = 0.0075
for instance, Q' is twice as important for the 2D SiC-SiC as for the fictitious isotropic
medium.

As the evaluation of the tensor P has been done for 3D cracks, the determination of the effective
compliance tensor can be calculated for two categories of the problem. Firstly, the damage process
can be represented by a multiplication of cracks with a fixed geometry. For instance, in a woven
CMUC, the cracks reach their size instantaneously as the bundles or the fibres limit their dimensions
and the matrix microcracking leads to an increase in the number of cracks. Another damage
process is defined at the microscopic scale by growing cracks. The fibre-matrix decohesion is an
example of growing cracks with a fixed distribution. This problem has been treated by Deng and
Nemat-Nasser (1992) for an isotropic medium and a 2D problem. The results we will present are
concerned with 3D growing cracks in a 2D SiC-SiC (Table 2) and in the fictitious isotropic solid
already defined. The dimensions of the unit cell of the material have been fixed, a and b have also
been fixed, the crack is growing in direction 2. Figure 9 represents three steps of a crack propagating
in the unit cell.

As 2c¢ increases when the cracks are growing, it is necessary to calculate the effective compliance
tensor for decreasing values of 6 = b/c and y = a/c. Figure 10 shows the change of § and y during
the damage process with respect to 2¢/2x, where 2x, is the distance between two cracks in direction
2. The fixed dimension of the crack in the other directions are 2a = 200 ym and 256 = 20 ym.

The effective compliance tensors are represented in Fig. 11 for the two materials with respect to
2¢/2x,. The calculations are performed with the self-consistent method and the unit cell is defined
in Fig. 9. The results are similar to the precedent application. Indeed, the anisotropy influences Sy,
more than the other components and the differences for Sss are due to the definition of the isotropic
material. Ss;, Sy, and Sss remain the most influenced components. Obviously, the variations of Sy,
are more visible than the Sss ones as the cracks are growing in direction 2 and do not change in
direction 1.

Whereas Fig. 11 deals with growing cracks, Fig. 3 is concerned with a multiplication of fixed
geometry cracks but they have a similar change for the most influenced compliances Ss;, Sy, and
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Fig. 11. Growing crack-induced variations of the compliance tensor.

Sss. This remark shows the importance of the material’s microstructure. Indeed, the compliances
variation indicates the orientation of microcracking but, without a morphological study of the
material, it is impossible to know whether cracks are either growing or multiplying.
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6. Comparison between experimental compliance changes and predictions on a 2D SiC-SiC
composite

Let us consider a woven 2D SiC-SiC. This ceramic—ceramic composite is manufactured from
preforms built up from multiple layers of Nicalon Silicon Carbide (SiC) fibre and the SiC matrix
is added by a chemical vapour infiltration (CVI) process. As the matrix has a lower failure strain
than the fibres, this composite exhibits rapidly a non linear behaviour mainly due to the matrix
microcracking under tensile stress. Because of the woven nature of the composite, the plane (2, 3)
is quasi isotropically transverse. The sample is a thin plate shaped, 3 mm in thickness and 2.7 g
cm ™~ in density. It was submitted to tensile stress in direction 3 parallel to the direction of one of
the bundles.

An experimental device that couples an ultrasonic immersion tank with a tensile machine allows
to know the changes of the complete stiffness and compliance tensor during a damage process for
a composite material (Audoin and Baste, 1994).

Figure 12 shows the two scales of damage in the 2D SiC-SiC. The damage process starts at 80
MPa with a transverse matrix cracking at the inter-bundle scale. Then, longitudinal and interstacks
cracking appear simultancously at 90 MPa. The three arrays of cracks come to saturation at 120
MPa and the intra-bundle damage start (Figs 13 and 14). Whereas, the inter-bundle cracks are all
slit cracks, the intra-bundle transverse matrix cracks are really ellipsoidal and the major axis is no
longer in direction 2 but in direction 1 (Fig. 12).

The prediction of the equivalent compliance tensor has been done with a two-models self-
consistent method. Indeed, the inter-bundle damage changes have been calculated with the infinite
elliptic cylinder without thickness (Laws, 1977b). The equation for the equivalent compliance
tensor is given by Laws et al. (1983) for an anisotropic medium with a longitudinal crack system:

T
Serr = Sp+ ZﬂlAl(S;ffla So) (32)

where f, is the crack density parameter and A, is given by:

A(Sa', So) = }gl_f}(} eQ (S, So)- (33)

Equation (32) is generalised for three crack systems by introducing f, and f; the crack density
parameters for the ‘t” transverse and ‘i’ interstacks crack systems and A, and A; are obtained from
the following index transformation

1-1,2-53,3-52,4-545-56,6->5 (34)
for the ‘t’ transverse crack system; and
1-2,2-51,3-53,4-555-46-6 (35)

for the ‘i’ interstacks crack system. We have solved the implicit equation:

7 i T
Serr = So+ ZﬁtAt(S&fl ,So)+ ZﬁlAl(Se?fl ,So)+ ZﬂiAi(Se}f] ,So) (36)
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Fig. 12. Micrographs of the transverse cracks in a 2D SiC—siC. (a) Inter-bundle scale; (b) intra-bundle scale (Morvan
and Baste, 1998).
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for the transverse crack f3,, the longitudinal crack f§, and the interstacks crack f;; (b) volume concentration of transverse
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where f3,, f; and f5;, the crack density parameters at the inter-bundle scale, are imposed with a linear
increase (Fig. 13).

The model changes with the intra-bundle scale. As the geometry of the longitudinal and inter-
stacks cracks remains the same, the infinite cylinder is still available for these arrays but the
transverse cracks are then represented with real ellipsoids so n/4 B A (S«', S,) is changed by ¢.Q ',
eqn (8) where ¢, is the volume concentration at the intra-bundle scale. The expression of the
equivalent tensor is then:

T 7
Ser =8 +¢.0 (S, P(Ser' ) + ZﬁlAl(S&fl ,So)+ ZﬁiAi(Se?fl ,So) (37)

where S’ is the value of S.4 at 120 MPa calculated with eqn (36) and c¢., f; and f5;, the crack density
parameters at the intra-bundle scale, are imposed with a linear increase (Fig. 13). This method allows
the prediction of the equivalent compliance tensor during the whole damage process (Fig. 14).

Figure 14 represents the variations of the 2D SiC-SiC compliance tensor during the load.
Experimental values are given with their 90% confidence interval (Baste and Morvan, 1996) and
predictions are plotted in a continuous line. The variations exhibit clearly three different domains.
Compliances remain unchanged until the damage threshold. Then matrix microcracking begins
and Sy; sees an increase of more than 300% until saturation at 120 MPa. The variation of S;;
becomes less visible as the matrix microcracking spreads inside the bundles. The same comments
can be made for S,, and S, although the variations are weaker. A good agreement is observed for
the diagonal compliances especially for the first three ones. The differences observed for S,,, Sss
and S, are most probably due to the interaction between the different arrays of cracks that is not
yet taken into account. This remark is also applicable to the extra-diagonal components.

7. Conclusion

A 3D representation of cracks has been developed. Even if it does not lead to analytical formulas,
this method gives a more realistic approach to the physical phenomena. Indeed, it takes into
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Fig. 14. Comparison between experimental data with their 90% confidence intervals (<) and predicted evolution (—)

of the compliance tensor for a 2D SiC-SiC.

account the crack opening displacement and permits a prediction of damage processes such as
growing cracks. Moreover, both the influence of the geometry of cracks and the effect of the
anisotropy have been illustrated. The introduction of 3D defined transverse cracks leads to a good
agreement between experimental data and a prediction for the compliance tensor. The predictions
of the non-diagonal compliances remain problematic and point out the necessity to take into
account the interaction between cracks with different orientations (Kachanov and Montagut, 1986;
Molinari and El Mouden, 1996).

Acknowledgements

C. Barret is grateful to the Région Aquitaine for its partial financial support.



C. Barret, S. Baste [ International Journal of Solids and Structures 36 (1999) 3709-3729 3729
References

Audoin, B., Baste, S., 1994. Ultrasonic evaluation of stiffness tensor changes and associated anisotropic damage in a
ceramic matrix composite. J. Appl. Mech. 55, 309-316.

Baste, S., Audoin, B., 1991. On internal variables in anisotropic damage. Eur. J. Mech. A Solids 10, 587-606.

Baste, S., Morgan, J.M., 1996. Under load strain partition of a ceramic matrix composite using an ultrasonic method.
Exper. Mech. 36, 148-154.

Bhargava, R.D., Radhakrishna, H.C., 1964. Elliptic inclusion in orthotropic medium. J. Phys. Soc. Japan 19, 396-405.

Budiansky, B., O’Connel, R., 1976. Elastic moduli of a cracked solid. Int. J. Solids Structures 12, 81-97.

Deng, H., Nemat-Nasser, S., 1992. Microcrack arrays in isotropic solids. Mech. Mater. 13, 15-36.

Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy.
Soc. A 241, 376-396.

Evans, A.G., Zok, F.W., 1994. The physics and mechanics of fiber-reinforced brittle matrix composites. J. Mater. Sci.
29, 3857-3896.

Faivre, G., 1971. Hétérogénéités ellipsoidales dans un milieu élastique anisotrope. J. de Phys. 32, 325-331.

Hashin, Z., 1988. The differential scheme and its applications to cracked materials. J. Mech. Phys. Solids 36, 719-734.

He, M.Y., Wu, B.-X., Evans, A.G., Hutchinson, J.W., 1994. Inelastic strains due to matrix cracking in unidirectional
fiber-reinforced composites. Mech. Mater. 18, 213-229.

Hill, R., 1965. A self consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213-222.

Hoenig, A., 1979. Elastic moduli of a non-randomly cracked body. Int. J. Solids Structures 15, 137-154.

Horii, H., Nemat-Nasser, S., 1983. Overall moduli of solids with microcracks: load-induced anisotropy. J. Mech. Phys.
Solids 31, 155-171.

Hosten, B., Baste, S., Choqueuse, D., 1992. Suivi par ultrasons du vieillissement hydrolytique de matériaux composites
4 matrice organique. In: AMAC (Ed.), Annales des Composites. pp. 65-76.

Kachanov, M., Montagut, E., 1986. Interaction of crack with certain microcrack arrays. Engn Frac. Mech. 25, 625-
636.

Laws, N., 1977a. The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic
material. J. Elast. 7, 91-97.

Laws, N., 1977b. A note on interaction energies associated with cracks in anisotropic solids. Phil. Mag. 36, 367-372.

Laws, N., 1985. A short note on penny-shaped cracks in transversely isotropic materials. Mech. Mater. 4, 209-212.

Laws, N., Dvorak, G.J., 1987. The effect of fiber breaks and aligned penny-shaped cracks on the stiffness and energy
release rates in unidirectional composites. Int. J. Solids Struct. 23, 1269-1283.

McLaughlin, R., 1977. A study of the differential scheme for composite materials. Int. J. Engng Sci. 15, 237-244.

Molinari, A., El Mouden, M., 1996. The problem of elastic inclusions at finite concentration. Int. J. Solids Structures
33, 3131-3150.

Mori, T., Tanaka, K., 1973. Average stress in matrix and average energy of materials with misfitting inclusions. Acta
Metal. 21, 571-574.

Morvan, J.-M., Baste, S., 1998. Effect of two-scale transverse cracks systems on the non linear behaviour of a 2D SiC—
SiC composite. Mater. Sci. Eng./A., A250, 231-240.

Wang, S.S., Chim, E.S.-M., Suemasu, H., 1986. Mechanics of fatigue damage and degradation in random short-fiber
composites, Part [I—Analysis of anisotropic property degradation. ASME J. Appl. Mech. 53, 347-353.

Willis, J.R., 1964. Anisotropic elastic inclusion problems. Quart. J. Mech. Appl. Math. 17, 157-174.

Zaoui, A., 1996. Méthodes de changement d’échelle en micromécanique des composites. In: AMAC (Ed.), Proceeding
of JINC10. pp. 13-26.

Zhao, Y.H., Tandon, G.P., Weng, G.J., 1989. Elastic moduli for a class of porous materials. Acta Mech. 76, 105-130.



